

IPSOS: Results from a Phase 3 study of first-line (1L) atezolizumab (atezo) vs single-agent chemotherapy (chemo) in patients (pts) with NSCLC not eligible for a platinum-containing regimen

<u>Siow Ming Lee</u>,¹ Christian Schulz,² Kumar Prabhash,³ Baohui Han,⁴ Aleksandra Szczesna,⁵ Diego Cortinovis,⁶ Achim Rittmeyer,⁷ David Vincente,⁸ Raffaele Califano,⁹ Anh Tuan Le,¹⁰ Geoffrey Liu,¹¹ Federico Cappuzzo,¹² Jessica Reyes Contreras,¹³ Martin Reck,¹⁴ Youyou Hu,¹⁵ Stefanie Morris,¹⁵ Elen Hoglander,¹⁵ Mary Connors,¹⁶ Hans Kristian Vollan,¹⁵ Solange Peters¹⁷

¹University College London Hospitals NHS Foundation Trust, CRUK Lung Cancer Centre of Excellence and UCL Cancer Institute, London, UK.; ²University Hospital Regensburg, Regensburg, Germany; ³Tata Memorial Hospital, Mumbai, Maharashtra, India; ⁴Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China;
⁵Mazowieckie Centrum Leczenia Chorób Płuc i Gruźlicy, Otwock, Poland; ⁶AAST H S Gerardo Monza, Monza, Italy;
⁷LKI Lungenfachklinik Immenhausen, Immenhause, Germany; ⁸H.U Virgen de la Macarena, Sevilla, Spain;
⁹The Christie NHS Foundation Trust and Division of Cancer Sciences, University of Manchester, Manchester, UK;
¹⁰Cho Ray Cancer Center, Cho Ray Hospital, Vietnam; ¹¹Princess Margaret Cancer Centre, Toronto, ON, Canada;
¹²National Cancer Institute IRCCS Regina Elena, Roma, Italy; ¹³Oncologico Potosino, San Luis Potosi, Mexico;
¹⁴Lung Clinic Grosshansdorf, Airway Research Center North, German Center of Lung Research, Grosshansdorf, Germany; ¹⁵F. Hoffmann-La Roche Ltd, Basel, Switzerland; ¹⁶Genentech, Inc., South San Francisco, CA, USA;
¹⁷Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland

Background

- Pivotal clinical trials showed that 1L treatment for NSCLC with immunotherapy with or without chemotherapy improved overall survival vs platinum-doublet chemotherapy¹
 - Guidelines recommend 1L single-agent immunotherapy options for patients with high PD-L1 expression (≥50%)^{2,3}
 - However, these studies and most treatment recommendations are limited to patients with good performance status (ECOG PS 0/1)³
- In real-world settings, ≥40% of patients with NSCLC have poor performance status (ECOG PS ≥2) and/or are elderly with multiple co-morbidities and poor tolerance of treatment⁴
 - Many of these patients are deemed ineligible for 1L platinum-based regimens and are usually excluded from clinical trials of 1L treatments⁵
- Given the relatively poor prognosis and limited treatment options when compared with the significant progress
 achieved in patients with PS 0/1 and oncogenic driven NSCLC patients, this population represents an important,
 under-studied NSCLC group with an unmet medical need to examine the efficacy, safety and quality of life with
 novel therapeutic options^{6,7}
- IPSOS (NCT03191786) is a Phase 3, global, multicentre, open-label, randomised, controlled study examining the
 efficacy, safety and patient-reported outcomes with atezolizumab vs single agent chemotherapy in patients who
 were considered unsuitable for 1L platinum-doublet chemotherapy

1L, first line; ECOG PS, Eastern Cooperative Oncology Group performance status. 1. Grant MJ, et al. Nat Rev Clin Oncol. 2021;18(10):625-644. 2. Planchard D, et al. Ann Oncol. 2018;29(Suppl 4):iv192-iv237. 3. Hanna NH, et al. J Clin Oncol. 2020;38(14):1608-1632. 4. Lilenbaum RC, et al. J Thorac Oncol. 2008;3(2):125-129. 5. De Marinis F, et al. Clin Lung Cancer 2015;16(6):399-405. 6. Middleton G, et al. Lancet Respir Med. 2020;8(9):895-904. 7. Mojsak et al. Adv Med Sci. 2021;66(2):381-387.

IPSOS Study Design

Treatment-naive stage IIIB^a/IV (AJCC 7th edition) NSCLC

- Squamous or non-squamous histology
- Platinum ineligible because of:
 - ECOG PS 2 or 3
 - ECOG PS 0 or 1 permitted if ≥70 years of age with substantial comorbidities or other contraindictions to platinum chemotherapy
- EGFR+ (L858R or exon 19 deletion) or ALK+ excluded
- Patients with treated asymptomatic brain metastases permitted

n=453

Stratification factors:

- Histology (squamous or non-squamous)
- PD-L1 expression level by SP142 IHC assay (TC3 or IC3 vs TC0/1/2 or IC0/1/2^b vs unknown)
- Brain metastases (yes/no)

Primary endpoint: Secondary endpoints:

- OS rates at 6, 12, 18 and 24 months
- PFS
- Objective response rate
- Duration of response
- OS and PFS in PD-L1 positive subgroup^c

Other endpoints:

- PROs
- Safety
- Exploratory biomarker analyses

ECOG PS, Eastern Cooperative Oncology Group Performance Status; PD, progressive disease; PI, prescribing information; PROs, patient-reported outcomes; q3w, every 3 weeks. R, randomised. ^a Not amenable for multimodality treatment. ^b TC0/1/2 or IC0/1/2 =TC0/1/2/3 or IC0/1/2/3 excluding TC3 or IC3. ^c Per SP263 IHC assay.

OS

Statistical Plan

Enrolment occurred from 2017 Sept to 2019 Sept

≈380 events were estimated to result in **90%** power and an overall type I error of 5% to detect a true difference in OS for atezolizumab vs chemotherapy at interim or final analysis

- OS was estimated using Kaplan-Meier method
- Treatment comparison used a stratified log-rank test
- HRs were estimated using a stratified Cox proportional hazards model

All efficacy analyses were done in the intention-to-treat population of all randomised patients

Interim Analysis

- Performed by iDMC when 304 events had been observed
- iDMC recommended study proceed to final analysis
- Final Analysis

Baseline Characteristics

	Atezolizumab (n=302)	Chemotherapy (n=151)
Age		
Median (range), y	75.0 (33, 94)	75.0 (37, 89)
<70 y, n (%)	80 (26.5)	43 (28.5)
70-79 y, n (%)	125 (41.4)	65 (43.0)
≥80 y, n (%)	97 (32.1)	43 (28.5)
ECOG PS, n (%)		
0/1	56 (18.5)	19 (12.6)
2	228 (75.5)	116 (76.8)
3	18 (6.0)	16 (10.6)
Sex, male, n (%)	220 (72.8)	108 (71.5)
Race, n (%)ª		
White	203 (67.2)	95 (62.9)
Asian	75 (24.8)	38 (25.2)
Histology, n (%) ^b		
Non-squamous	173 (57.3)	87 (57.6)
Squamous	129 (42.7)	64 (42.4)

Atezolizumab (n=302)	Chemotherapy (n=151)
27 (8.9)	13 (8.6)
273 (90.4)	137 (90.7)
2 (0.7)	1 (0.7)
209 (69.2)	103 (68.2)
58 (19.2)	28 (18.5)
35 (11.6)	20 (13.2)
151 (50.0)	61 (40.4)
127 (42.1)	78 (51.7)
77 (25.5)	53 (35.1)
50 (16.6)	25 (16.6)
24 (7.9)	12 (7.9)
	Atezolizumab (n=302) $277 (8.9)$ $273 (90.4)$ $273 (90.4)$ $2 (0.7)$ $2 (0.7)$ $209 (69.2)$ $58 (19.2)$ $35 (11.6)$ $151 (50.0)$ $127 (42.1)$ $77 (25.5)$ $50 (16.6)$ $24 (7.9)$

Clinical cutoff: 30 Apr 2022. ^a In the atezolizumab arm, 12 patients were American Indian or Alaska Native, 2 Black or African American, 6 multiple races, and 4 unknown. In the chemotherapy arm, 9 patients were American Indian or Alaska Native, 1 Black or African American, 6 multiple races, and 2 unknown. ^b Per electronic case report form. ^c By SP263 IHC assay.

Primary Endpoint: OS

	Atezo	Chemo				Atezo	Chemo		
<u>Subgroup</u>	n	n		<u>HR (95% CI)</u>	<u>Subgroup</u>	<u>n</u>	n		<u>HR (95% CI)</u>
All patients	302	151	-	0.78 (0.63, 0.97)ª	All patients	302	151	I♠I	0.78 (0.63, 0.97) ^a
Age					Stage				
<70 y	80	43		0.75 (0.49, 1.14)	IIIB	41	21		0.69 (0.39, 1.24)
70-79 y	125	65		0.68 (0.49, 0.94)	IV	261	130	⊢ ♠	0.81 (0.64, 1.02)
≥80 y	97	43		0.97 (0.66, 1.44)	Brain metastases				
Sex					Yes	27	13		0.85 (0.40, 1.80)
Male	220	108	K 1	0.76 (0.59, 0.98)	No	273	137	I ♦I	0.78 (0.62, 0.98)
Female	82	43		0.86 (0.58, 1.27)	Liver metastases				
Race					Yes	44	26	⊢	0.94 (0.55, 1.59)
White	203	95	K	0.86 (0.67, 1.11)	No	258	125	⊢ ♦•	0.77 (0.61, 0.98)
Asian	75	38		0.74 (0.46, 1.20)	Number of metast	tatic sites			
ECOG PS					<3	124	73	⊢ ♠-	0.74 (0.53, 1.03)
0/1	56	19		0.64 (0.36, 1.13)	≥3	141	59	⊢ ♠∔	0.78 (0.56, 1.07)
2	228	116	K	0.86 (0.67, 1.10)	P D-L1 expressio	n level ^b			
3	18	16		0.74 (0.35, 1.57)	TC <1%	151	61	⊢ ◆ +I	0.81 (0.58. 1.11)
Tobacco use history					TC ≥1%	127	78	H H	0.84 (0.62, 1.15)
Previous	209	103	■	0.83 (0.64, 1.08)	TC 1-49%	77	53		0.84 (0.57, 1.22)
Current	58	28		0.65 (0.40, 1.07)	TC ≥50%	50	25	⊢ →	0.87 (0.50, 1.52)
Never	35	20		0.70 (0.37, 1.35)	Unknown	24	12	⊢	0.49 (0.21, 1.14)
Histology							0.1	1	10
Non-squamous	173	87	K	0.77 (0.58, 1.03)			-	<u> </u>	→
Squamous	129	64		0.80 (0.58, 1.12)			Atezolizur	nab better Chemoth	erapy better
		0.1	1	10					
		←	HR						
		Atezolizuma	b better Chemot	nerapy better					

	Atezo	Chemo				Atezo	Chemo		
<u>Subgroup</u>	n	n		<u>HR (95% CI)</u>	<u>Subgroup</u>	<u>n</u>	<u>n</u>		<u>HR (95% CI)</u>
All patients	302	151		0.78 (0.63, 0.97)ª	All patients	302	151	I	0.78 (0.63, 0.97)ª
Age					Stage				
_<70 y	80	43		0.75 (0.49, 1.14)	IIB	41	21		0.69 (0.39, 1.24)
70-79 y	125	65		0.68 (0.49, 0.94)	IV	261	130	H.	0.81 (0.64, 1.02)
≥80 y	97	43		0.97 (0.66, 1.44)	Brain metastases				
Sex					Yes	27	13	⊢	0.85 (0.40, 1.80)
Male	220	108	K N	0.76 (0.59, 0.98)	No	273	137	I ♦	0.78 (0.62, 0.98)
Female	82	43		0.86 (0.58, 1.27)	Liver metastases				
Race					Yes	44	26	⊢	0.94 (0.55, 1.59)
White	203	95	K	0.86 (0.67, 1.11)	No	258	125	I ♦	0.77 (0.61, 0.98)
Asian	75	38		0.74 (0.46, 1.20)	Number of metasta	tic sites			
ECOG PS					<3	124	73	⊢ ♠-	0.74 (0.53, 1.03)
0/1	56	19		0.64 (0.36, 1.13)	≥3	141	59	⊢ ♠	0.78 (0.56, 1.07)
2	228	116	K1	0.86 (0.67, 1.10)	P D-L1 expression	levelb			
3	18	16		0.74 (0.35, 1.57)	TC <1%	151	61	⊢ ↓ I	0.81 (0.58. 1.11)
Tobacco use history					TC ≥1%	127	78	⊢♦ −1	0.84 (0.62, 1.15)
Previous	209	103	K	0.83 (0.64, 1.08)	TC 1-49%	77	53	⊢♦ −1	0.84 (0.57, 1.22)
Current	58	28		0.65 (0.40, 1.07)	TC ≥50%	50	25	⊢	0.87 (0.50, 1.52)
Never	35	20		0.70 (0.37, 1.35)	Unknown	24	12	⊢	0.49 (0.21, 1.14)
Histology							0.1	1	10
Non-squamous	173	87	K	0.77 (0.58, 1.03)			-	<u>H</u> R	→
Squamous	129	64		0.80 (0.58, 1.12)			Atezolizu	mab better Chemoth	erapy better
		0.1	1	10					
		4	HR	>					
		Atezolizuma	b better Chemot	herapy better					

	Atezo	Chemo				Atezo	Chemo		
<u>Subgroup</u>	<u>n</u>	<u>n</u>		<u>HR (95% CI)</u>	<u>Subgroup</u>	<u>n</u>	n		<u>HR (95% CI)</u>
All patients	302	151	-	0.78 (0.63, 0.97)ª	All patients	302	151	I ♠I	0.78 (0.63, 0.97) ^a
Age					Stage				
_<70 y	80	43	••	0.75 (0.49, 1.14)	IIB	41	21		0.69 (0.39, 1.24)
70-79 y	125	65		0.68 (0.49, 0.94)	IV	261	130	I ♦	0.81 (0.64, 1.02)
≥80 y	97	43		0.97 (0.66, 1.44)	Brain metastases				
Sex					Yes	27	13		0.85 (0.40, 1.80)
Male	220	108	K	0.76 (0.59, 0.98)	No	273	137	H I	0.78 (0.62, 0.98)
Female	82	43		0.86 (0.58, 1.27)	Liver metastases				
Race					Yes	44	26	⊢	0.94 (0.55, 1.59)
White	203	95	R	0.86 (0.67, 1.11)	No	258	125	I ♠ I	0.77 (0.61, 0.98)
Asian	75	38		0.74 (0.46, 1.20)	Number of metast	atic sites			
ECOG PS					<3	124	73	⊢ ♠∔	0.74 (0.53, 1.03)
0/1	56	19		0.64 (0.36, 1.13)	≥3	141	59	⊨♠	0.78 (0.56, 1.07)
2	228	116	K	0.86 (0.67, 1.10)	P D-L1 expression	n level ^b			
3	18	16		0.74 (0.35, 1.57)	TC <1%	151	61	⊢ ∳i	0.81 (0.58. 1.11)
Tobacco use history					TC ≥1%	127	78	H H	0.84 (0.62, 1.15)
Previous	209	103	■	0.83 (0.64, 1.08)	TC 1-49%	77	53	H H	0.84 (0.57, 1.22)
Current	58	28		0.65 (0.40, 1.07)	TC ≥50%	50	25	⊢	0.87 (0.50, 1.52)
Never	35	20		0.70 (0.37, 1.35)	Unknown	24	12	⊢	0.49 (0.21, 1.14)
Histology		_					0.1	1	10
Non-squamous	173	87	K	0.77 (0.58, 1.03)				<u> </u>	
Squamous	129	64	*	0.80 (0.58, 1.12)			Atezolizur	nab better Chemothe	erapy better
L		0.1	1	10					
			HR						

Atezolizumab better Chemotherapy better

	Atezo	Chemo				Atezo	Chemo		
<u>Subgroup</u>	n	n		<u>HR (95% CI)</u>	<u>Subgroup</u>	n	n		<u>HR (95% CI)</u>
All patients	302	151		0.78 (0.63, 0.97)ª	All patients	302	151	F∳F	0.78 (0.63, 0.97)ª
Age					Stage				
_<70 y	80	43		0.75 (0.49, 1.14)	IIIB	41	21	⊢ ↓	0.69 (0.39, 1.24)
70-79 y	125	65		0.68 (0.49, 0.94)	IV	261	130	H I	0.81 (0.64, 1.02)
≥80 y	97	43		0.97 (0.66, 1.44)	Brain metastases				
Sex					Yes	27	13	⊢	0.85 (0.40, 1.80)
Male	220	108	K	0.76 (0.59, 0.98)	No	273	137	H I	0.78 (0.62, 0.98)
Female	82	43		0.86 (0.58, 1.27)	Liver metastases				
Race					Yes	44	26	⊢	0.94 (0.55, 1.59)
White	203	95	K ¢ P	0.86 (0.67, 1.11)	No	258	125	H.	0.77 (0.61, 0.98)
Asian	75	38		0.74 (0.46, 1.20)	Number of metast	atic sites			
ECOG PS					<3	124	73	⊢ ↓ ↓	0.74 (0.53, 1.03)
0/1	56	19		0.64 (0.36, 1.13)	≥3	141	59	⊢ ↓	0.78 (0.56, 1.07)
2	228	116	K ¢ p	0.86 (0.67, 1.10)	PD-L1 expression	level ^b			
3	18	16		0.74 (0.35, 1.57)	TC <1%	151	61	⊢ ♦ +I	0.81 (0.58. 1.11)
Tobacco use history	/				TC ≥1%	127	78	⊢ ♦	0.84 (0.62, 1.15)
Previous	209	103	K	0.83 (0.64, 1.08)	TC 1-49%	77	53	⊢ ♦	0.84 (0.57, 1.22)
Current	58	28		0.65 (0.40, 1.07)	TC ≥50%	50	25	⊢	0.87 (0.50, 1.52)
Never	35	20		0.70 (0.37, 1.35)	Unknown	24	12	⊢	0.49 (0.21, 1.14)
Histology		•					0.1	1	
Non-squamous	173	87	K	0.77 (0.58, 1.03)				<u> </u>	`
Squamous	129	64		0.80 (0.58, 1.12)			Atezolizu	mab better Chemoth	erapy better
oquamodo		0.1	1	10					
		0.1	, HR	10					
			h hattar Chamat						

Atezolizumab better Chemotherapy better

Secondary Endpoints: ORR and DOR

	Atezolizumab (n=302)	Chemotherapy (n=151)
ORR, n (%) 95% Cl	51 (16.9) (12.8, 21.6)	12 (7.9) (4.2, 13.5)
CR, n (%)	4 (1.3)	0 (0)
PR, n (%)	47 (15.6)	12 (7.9)
Stable disease, n (%)	122 (40.4)	73 (48.3)
Disease control rate, n (%)	173 (57.3)	85 (56.3)
Progressive disease, n (%)	67 (22.2)	36 (23.8)
Non-evaluable, n (%)	14 (4.6)	12 (7.9)
Missing, n (%)	48 (15.9)	18 (11.9)

Clinical cutoff: 30 Apr 2022. CR, complete response; DOR, duration of response ORR, objective response rate; PR, partial response. Error bars represent 95% CI.

Secondary Endpoints: PFS

Subsequent Anti-cancer Therapies^a

	Atezolizumab (n=302)	Chemotherapy (n=151)
Number of patients with any subsequent anti-cancer therapy, n (%)	61 (20.2)	45 (29.8)
Chemotherapy, n (%)	48 (15.9)	16 (10.6)
Cancer Immunotherapy, n (%)	4 (1.3)	28 (18.5)
TKI, n (%)	10 (3.3)	5 (3.3)
Other, n (%)	3 (1.0)	1 (0.7)

Safety Summary

	Atezolizumab (n=300)	Gemcitabine (n=63)	Vinorelbine (n=84)	
Median treatment duration, months (range)	3.5 (0-51)	2.3 (0-13)	1.8 (0-21)	
Median number of cycles initiated (range)	6.0 (1-73)	4.0 (1-19)	3.0 (1-31)	
	Atezolizumab (n=300)	Chemotherap	oy (n=147)	
All-grade AE, n (%)	275 (91.7)	143 (97.3)		
Treatment-related AE	171 (57.0)	118 (80.3)		
Grade 3-4 AE, n (%)	136 (45.3)	71 (48.3)		
Treatment-related Grade 3-4 AE	49 (16.3)	49 (33.3)		
Serious AE, n (%)	146 (48.7)	53 (36.1)		
Treatment-related SAE	35 (11.7)	23 (15.6)		
Grade 5 AE, n (%)	35 (11.7)	13 (8.8)		
Treatment-related Grade 5 AE	3 (1.0)	4 (2.7	')	
AE leading to discontinuation of study drug, n (%)	39 (13.0)	20 (13	.6)	
AE leading to modification/interruption of study drug, n (%)	96 (32.0)	71 (48	.3)	

AESIs^a >1% in either arm

	Atezolizumab (n=300)	Chemotherapy (n=147)
All-grade AESI, n (%)	102 (34.0)	27 (18.4)
Immune-mediated rash	45 (15.0)	11 (7.5)
Immune-mediated hepatitis (diagnosis and lab abnormalities)	32 (10.7)	9 (6.1)
Immune-mediated hepatitis (lab abnormalities)	27 (9.0)	8 (5.4)
Immune-mediated hepatitis (diagnosis)	7 (2.3)	1 (0.7)
Immune-mediated hypothyroidism	27 (9.0)	1 (0.7)
Immune-mediated pneumonitis	13 (4.3)	3 (2.0)
Immune-mediated hyperthyroidism	7 (2.3)	3 (2.0)
Immune-mediated diabetes mellitus	4 (1.3)	0
Grade 3-4 AESI, n (%)	20 (6.7)	3 (2.0)
All-grade AESI requiring use of corticosteroids, n (%)	34 (11.3)	7 (4.8)

AESIs^a >1% in either arm

	Atezolizumab monotherapy historical data ^b (n=3178)	Atezolizumab (n=300)	Chemotherapy (n=147)
All-grade AESI, n (%)	1101 (34.6)	102 (34.0)	27 (18.4)
Immune-mediated rash	613 (19.3)	45 (15.0)	11 (7.5)
Immune-mediated hepatitis (diagnosis and lab abnormalities)	343 (10.8)	32 (10.7)	9 (6.1)
Immune-mediated hepatitis (lab abnormalities)	315 (9.9)	27 (9.0)	8 (5.4)
Immune-mediated hepatitis (diagnosis)	62 (2.0)	7 (2.3)	1 (0.7)
Immune-mediated hypothyroidism	164 (5.2)	27 (9.0)	1 (0.7)
Immune-mediated pneumonitis	91 (2.9)	13 (4.3)	3 (2.0)
Immune-mediated hyperthyroidism	30 (0.9)	7 (2.3)	3 (2.0)
Immune-mediated diabetes mellitus	10 (0.3)	4 (1.3)	0
Grade 3-4 AESI, n (%)	-	20 (6.7)	3 (2.0)
All-grade AESI requiring use of corticosteroids, n (%)	-	34 (11.3)	7 (4.8)

Clinical cutoff: 30 Apr 2022. ^a Adverse event of special interest as defined in Roche basket file. ^b Historical atezolizumab monotherapy population includes pooled data from 3178 patients in mixed tumor types (studies: IMvigor210, IMvigor211, OAK, BIRCH, POPLAR, FIR, IMmotion150 and PCD4989g).

Health-Related QOL Patient-Reported Outcomes

Prespecified patient-reported outcome measures^a assessed by EORTC QLQ-C30^b and QLQ-LC13^c:

- Change from baseline summaries
 - ≥10-point change in a treatment arm was considered clinically meaningful
- Time to confirmed deterioration in patient-reported lung cancer symptoms of cough, dyspnoea, chest pain, arm/shoulder pain, or fatigue
 - Time to confirmed deterioration is defined as the time from randomisation to the first confirmed clinically meaningful deterioration in EORTC symptom scores
 - Confirmed deterioration is defined as ≥10-point increase above baseline in ≥2 consecutive assessments or followed by death

Clinical cutoff: 30 Apr 2022. EORTC, European Organisation for Research and Treatment of Cancer. ^a Patient-reported outcome questionnaires completed with each tumor assessment (q6w for 48 weeks and q9w thereafter) until disease progression per RECIST v1.1. ^b EORTC QLQ-C30 covers general aspects of health-related QOL. ^c EORTC QLQ-LC13 is a 13-item lung cancer-specific questionnaire.

Health-Related QOL Patient-Reported Outcomes: Functioning Scales

• Atezolizumab arm remained stable (≤10%) across all domains, while chemotherapy arm showed some deterioration

Clinical cutoff: 30 Apr 2022. QOL, quality of life. Only time points with data for \geq 10 patients in either treatment group are shown. Completion rates out of expected patients were mostly comparable between treatment arms and were >70%, with the exception of Week 36 (67%). No meaningful changes were observed in either arm for physical functioning, emotional functioning, or Global Health Status. Error bars represent SEM.

PARIS ESVO

Health-Related QOL Patient-Reported Outcomes: EORTC QLQ-C30 and QLQ-LC13 Symptoms

Clinical cutoff: 30 Apr 2022. Meaningful improvement or deterioration defined as ≥10% change from baseline. Only time points with data for ≥10 patients in either treatment arm are shown. Completion rates out of expected patients were mostly comparable between treatment arms and were >70%, with the exception of Week 36 (67%). No meaningful change observed for fatigue, nausea and vomiting, pain, dyspnoea, constipation, diarrhoea, financial difficulties, haemoptysis, sore mouth, dysphagia, pain in arm or shoulder, or pain in other parts. Error bars represent SEM.

Time to Confirmed Deterioration

Conclusions

- 1L atezolizumab significantly improved OS over third generation single-agent chemotherapy (HR, 0.78) in patients with NSCLC deemed ineligible to receive platinum-doublet chemotherapy regardless of histology, PD-L1 expression level and ECOG PS
 - 2-year OS rate nearly doubled with atezolizumab (24.3% vs 12.4%)
- ORR was higher with atezolizumab with durable responses (14 vs 7.8 months)
- Atezolizumab was associated with stabilization in health-related QoL functioning domains and significant improvement in time to deterioration of chest pain (HR, 0.51) vs chemotherapy
- No new or unexpected AESI's were identified with atezolizumab in this study population
 - Treatment-related Grade 3-4 AEs occurred in a smaller proportion of patients receiving atezolizumab vs chemotherapy (16.3% vs 33.3%)
- IPSOS is the first randomised study to show that 1L treatment with atezolizumab improves OS in this poor-prognosis NSCLC population with no EGFR and ALK alterations regardless of histology, PD-L1 status and ECOG PS with no new safety signals identified, while maintaining QoL

Comments

- Interestingly, not a PDL1 stratified study, benefit across all histologies, all PDL1 expressions and ECOG performance statuses ? Different biology.
- Amazing data set of under represented population in clinical trial. Data to make decisions in real world clinic.
- Gemcitabine or Navelbine not a standard of care in this population. Pemetrexed not to be left out – well tolerated in this similar population.
- Financial toxicity of medications. We want patients to be on these therapy – encouraging results, prolonging lives, keeping good QoL. However 90% patient receiving chemotherapy crossed over to Immunotherapy arm.

